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Abstract. A modified form of excess angular momentum is introduced into both the n 
dimensional hydrogen atom and the harmonic oscillator. The degeneracies of the new energy 
levels are shown to be simply related to the representations of O(n+ 1)  and SU(n), and in one 
case this is explained by decomposing the excess system into the direct sum of similar normal 
systems. 

1. Introduction 

Excess angular momentum was first introduced by Cisneros and McIntosh (1970) when 
they were considering the problem of relating a universal symmetry group to the 
degeneracies of two-dimensional quantum-mechanical systems. The total angular 
momentum was increased by multiplying the angular momentum operator with a 
constant factor, and they examined the effects of this on the degeneracy. 

Such systems are somewhat artificial although when the multiplying factor is an 
integer the modification is equivalent to restricting the values of the angular momentum 
to multiples of an integer. Even when the multiplying factor is not an integer there are 
several reasons for considering what happens when excess angular momentum is intro- 
duced into n dimensional systems. 

Firstly, the presence of extra (or ‘accidental’) degeneracy in the normal cases is not 
clearly understood and universal symmetry groups have been proposed for such n 
dimensional problems, so that, like Cisneros and McIntosh, we wish to discover the 
effect of making minor alterations to these problems. Although Cisneros and McIntosh 
(1970) mention the n dimensional cases, their results are not consistent and so it is 
important to correct and complete their work. In fact, in some respects, it is easier to 
consider adding excess angular momentum, in a modified form, to the n dimensional 
systems than it was to the two-dimensional ones and it is interesting to discover that 
there are precise formulae relating the degeneracies in several different cases. 

However, the main motivation for this work arises from the case when the muItiplying 
factor is an integer. This is a more realistic problem and possesses some special proper- 
ties similar to those of the anisotropic harmonic oscillator. As explained in King (1973) 
several authors have studied the degeneracies of the anisotropic oscillator and so it is 
very interesting to have another example which leads to an almost identical situation. 
The importance of both these examples is that they challenge the usual explanations 
given for the ‘accidental’ degeneracy of the oscillator and hydrogen atom. Although we 
have produced decompositions which account for the degeneracies there is still no 
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reason for expecting these modified systems to possess accidental degeneracy and good 
theories ought to be able to predict the degeneracies for these cases as well as the normal 
ones. 

In 6 2 a modified form of excess angular momentum is introduced and the eigenvalues 
noted. The degeneracies are given in 6 3, and in 6 4 these are related to the patterns 
occurring in the normal cases. Finally, it is shown how an excess system with an integer 
multiplying factor can be decomposed in a way which accounts for the degeneracies. 

2. Excess systems 

The two systems to be considered are the n dimensional, quantum-mechanical, hydrogen 
atom and isotropic oscillator, as in both cases the Schrodinger equation of the problem 
can be written, 

where L; is the total orbital momentum operator in n dimensions and V ( r )  takes the 
forms - r -  and r2  respectively. 

As Li is independent of I ,  the usual method of solving (1) is ‘separation ofthe variables’ 
and so IJ is written $ = fm(r)Ym, where Y, is an eigenfunction of L;. The function f , (r)  
is any solution of (1) with the appropriate eigenvalues of Li substituted in place of L;. 

It has been shown by Joseph (1967) that Li takes the values m(m + n - 2) for all non- 
negative integers m, and that the eigenfunctions have O ( n )  symmetry. In fact, for n > 2, 
Joseph shows that the degeneracy, D,(m), of the eigenvalue m(m + n - 2)  is given by 

D,(m) = (m  + n - 3)! (2m + n - 2)[ (n  - 2 ) ! m ! ] -  ’ 
(m  2 2). = c, m + n - 1  -c;+;-3 

Now it can be seen that f,(r) is a solution of 

and any solution of ( 1 )  has at least O ( n )  degeneracy due to the degeneracy of the angular 
momentum. However, it turns out that there is extra, ‘accidental’ degeneracy due to the 
nature of the solutions of ( l a ) .  We are interested in examining what happens to this 
extra degeneracy when the equation ( la )  is slightly modified. 

Cisneros and McIntosh (1970) modify this equation by introducing the positive 
scalar factor c2 ,  which multiplies each eigenvalue of L;. However, in some ways it is 
more natural to consider what happens when each integer m is multiplied by a positive 
constant. If this constant is an integer the modification is equivalent to restricting m to 
all the multiples of that integer. 

Thus, in this paper, the hydrogen atom and isotropic oscillator with excess angular 
momentum will be described by the functions $ = fm(r)Ym, such that Y,is an eigenfunction 
of L; and f,(r) is a solution of 

[r1- , ; (rn-lg)  - ~ m ( c m + n - 2 ) r - ~ - T / ( r )  f, = Ef,  1 ( 3 )  

where c is a positive constant and E is the energy of the system. As we are only modifying 
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the equation determining f ,  these systems still possess O(n) symmetry due to the 
eigenfunctions Y, and so for each non-negative integer m the degeneracy is still given by 
(2) .  

Equation (3) can be solved using any of the methods employed when c = 1 (cf Bander 
and Itzykson 1966 or Schrodinger 1940), and if E ,  and E ,  denote the energies of the 
hydrogen atom and oscillator respectively, 

E ,  = E , ( m , k )  = -)[cm+k+gn-1)]-2 

E ,  = E,(m, k)  = c m + 2 k + $ n  
(4) 

for all non-negative integers k. 
Cisneros and McIntosh (1970) claim that their modifications give the same energy 

values but their equations lead to  some unpleasant complications in the general case. 
However, most of their work is concerned with the two-dimensional case and then the 
two types of modification are identical. 

3. Degeneracies of the excess systems 

In the normal cases the degeneracy due to the angular momentum is increased by the 
‘extra’ degeneracy between the m and k. The interest in excess angular momentum is to 
see how much of this ‘accidental’ degeneracy remains when c is not equal to 1. Clearly 
when c is irrational there is no extra degeneracy so that in this case, the excess angular 
momentum removes all the accidental degeneracy. Thus the important cases occur when 
c = a b -  ’, where a and b are two mutually prime positive integers. In these cases the 
accidental degeneracy depends on the degeneracy of (am + bk)  and (am + 2bk). 

As a and b are mutually prime every value of am+ bk can be uniquely written as 
a b E + a M + b K ,  where E,  M ,  K are positive integers and M < b,  K < a. Hence the 
energy eigenvalues of the hydrogen atom with excess angular momentum can be 
uniquely written as : 

( 5 )  E , @ ,  k )  = -$[(aE + a b -  ’ M + K ) + % n  - 1)]-’, 

and E ,  takes this value whenever m = ib+ M and k = (E - i)a+ K with 0 < i < E .  
If d is the highest common factor of a and 2b, then a’ = a d - ’  and b‘ = 2bd-’  are 

mutually prime and (cm + 2k) = db-  ‘ ( d m  + b’k). Thus the energy values of the oscillator 
with excess angular momentum can be uniquely written as : 

E,(m, k )  = 2 ( a ’ E f a ’ b ’ - ’ M + K ) + ) n  = 2 ( a ’ E + ) a b - ’ M + K ) + i n  (6) 

where E ,  M, K are positive integers M < b‘, K < a’. E ,  takes this value whenever 
m = i b + M , k  = ( E - i ) a ’ + K  for0  < i < E .  

The degeneracy with respect to each m is D,(m) and so for the hydrogen atom and 
oscillator respectively, the total degeneracies D,(E,  M ,  K) and D,(E, M ,  K )  of the energy 
levels determined by E ,  M ,  K are given by 

E 

D , ( E ,  M ,  K )  = 1 D,(ib+ M )  

D,(E, M ,  K )  = D,(i2bd- + M ) .  

i = O  

E 

i = O  

(7) 
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4. The new degeneracies and O(n + l), SU(n) 

It is now possible to  consider how the degeneracies of the excess systems depend on the 
values of a and b. 

Firstly, when a = b = 1 both M and K are zero and d = 1. This is, of course, the 
standard case and using the properties of C:+n- ', the degeneracies can be calculated 
from (2) and (7). It is not difficult to  check that these expressions reduce to the usual 
formulae, which show that the degeneracies correspond to the dimensions of certain 
irreducible representations of O(n + 1) and SU(n), respectively. This well known property 
has been studied by many authors (eg Bander and Itzykson 1966). 

Taking a to  be greater than 1, while keeping b = 1, is equivalent to restricting the 
total orbital angular momentum, m, to  being multiples of the integer a. As M is still 
zero the right-hand sides of (7) are exactly the same as when a = 1, except for d-  ' in E , .  
Hence for any integer a, the degeneracies of E ,  still correspond to  O(n + 1). In fact for 
each K < a, the degeneracy D,(E,  0, K) equals the degeneracy of the normal hydrogen 
atom when the energy is - f[E+$n- l)]-,. Thus there are a series of degeneracy 
spaces, each series corresponding to the representations of O(n + 1) and so the degeneracy 
pattern resembles the direct sum of a copies of the normal hydrogen atom. This is very 
similar to the degeneracy patterns of the anisotropic harmonic oscillator with rationally 
related frequencies (King 1973). 

When a is odd, d = 1 and so a similar result is true for the isotropic oscillator with 
excess angular momentum. Again there are a series of degeneracy spaces, each series 
corresponding to the totally symmetric irreducible representations of SU(n). But, if a 
is even, d = 2 and so a' = fa ,  which means that there are now f a  series of degeneracy 
spaces and within each series the dimensions of the degeneracy spaces correspond to  the 
dimensions of representations of O(n+ 1). So, in one sense, this system resembles the 
direct sum of $a normal hydrogen atoms. 

The right-hand sides of (7) are more complicated when a = 1 and b is greater than 1. 
However, if the degeneracies D 1 ( E ,  M ,  0) of all the energy levels with E fixed are summed 
as M varies from 0 to b- 1 then the right-hand side includes all the Dn(i), with 
0 < i < ( E  + l)b, exactly once. This is just the degeneracy of the energy value corre- 
sponding to bE + b - 1 in the normal system. So in this case the excess angular momentum 
splits some of the normal degeneracy spaces of the hydrogen atom into b different 
subspaces. 

A similar situation occurs in the oscillator case when the sum is taken over all even 
M varying from 0 to 2(b- 1). But if the sum is taken over all M from 0 to b', when a is 
either 1 or 2, then the right-hand side of (7) includes all the D,(i) with 0 < i < ( E  + 1)b' 
which gives the degeneracy corresponding to Eb'+b'- 1 in the normal hydrogen 
atom. 

Even when both a and b are greater than 1, the degeneracies are independent of K 
and a, except for the factor d. Thus, whenever a is greater than 1, there will be a copies of 
the degeneracies, in the sense that there will be a series of degeneracy spaces and each 
series contains exactly the same degeneracies, which can be found by holding b fixed 
and taking a = 1, K = 0. The only difference in the oscillator case, is that when a is 
even there are only +a copies and these are found by taking a = 2. 

Let D",'(E, M ,  K )  and D"i(E, M ,  K )  be the degeneracies of the energy level determined 
by E ,  M ,  K for the hydrogen atom and isotropic oscillator, where both systems have 
excess angular momentum determined by c = ab-'.  If D,@) = Df*'(E,O,O) then 
DAE) is the degeneracy of the system without any excess. The comments of the previous 
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paragraphs can now be summarized in the formulae : for all K < a and j = 1,2, 

D49b(E, M ,  K )  = D4*b(E, M ,  0)  = Df,b(E,  M ,  0) 

D;*'(E, 0, K )  = Dj(E)  
b -  1 

Df ,b(E, jM,  0 )  = D,(bE + b-  1) 
M = O  

and 
b ' -  1 

C Diqb(E, M ,  0 )  = D,(b'E + b'-  1) 
M = O  

except that when a is even and K < +a, 

D"z.(E, M ,  K )  = D:pb(E, M ,  0). 

These formulae clearly show how the introduction of a produces several copies of the 
same system, and when b = 1 this is just the normal system with the usual O(n+ 1) and 
SU(n) degeneracies. However, the effect of varying b is not clear because it is not obvious 
which energy values represented by the E ,  M ,  0 are present on the left-hand sides of (8). 

To establish a simple formula concerning the effect of b, let D4vb(E) = D;vb(E', M ,  K )  
whenever E = aE'+ cM + K ,  and then 

b -  1 

1 D;sb(E - rb- l )  = D l ( E )  
r = O  

where bE = aE+s.  It is easy to check that bE is always an integer and that as E', M ,  K 
vary bE takes all possible positive integral values. Hence E - rb- is an energy value 
whenever E is, and so 

bE-r  = abE,+aM,+bK, (11) 

where M , ,  K ,  are positive integers M ,  < b, K ,  < a. 
Consider (1 1) for two values of r .  The difference between r and r' is not a multiple of 

b and so M ,  = M,, implies r = r'. Thus M ,  takes all the values from 0 to b -  1 as r 
ranges from 0 to b - 1. 

Let bE = aE+s  = a(be+G)+s where 0 < G < b,O < s <  a ,  and then substituting 
in (1 1) and rearranging, 

(12) 

Now the right-hand side of (12) is less than 2ab, but greater than -ab so that E ,  is either 
e or e -  1. When E ,  = e the left-hand side is zero and so M ,  < G ,  but when E ,  = e -  1 
the left-hand side is ab, which is greater than bK,+ r and so M ,  > G .  

Thus as r varies from 0 to b - 1, M ,  takes all the values from G + 1 to b - 1 when 
E ,  = e -  1, and all the values from 0 to  G when E ,  = e .  Using the formulae (7), (8) and 
the definition of D"lb(E), 

D;Vb(E-rb-') = 

ab(e- E,) = 4 M ,  - G ) +  b K ,  + r -s .  

b -  1 b -  1 be+G 

Dysb(E,, M,,O) = 1 D,(i) = D,(be+G) = I l l (& 
r = O  r = O  i = O  

which proves the formula (10). 
Thus when b is greater than 1, the introduction of excess angular momentum into 

the hydrogen atom has the interesting effect of splitting the degeneracy in such a way that 
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the sum of the degeneracies of any b consecutive levels gives the degeneracy of the normal 
system for a related level and so corresponds to a representation of O(n + 1). 

The parallel results for the oscillator are given for all a by, 

b ' -  1 1 Dl;.b(E-rb'-l) = Dl(E*)  
r = O  

where b E  = aE* + s ,  and when a is odd by, 
b -  1 1 Dl;.b(E-rb-l) = D,(E*) 
r = O  

where 2bE = a(2E*+i)+s, i = 0 or 1. 

5. A decomposition of the hydrogen atom with excess angular momentum 

It is possible (King 1973) to explain the degeneracies of the anisotropic harmonic 
oscillator, mentioned previously, by proving that the hamiltonian is equivalent to the 
direct sum of several isotropic hamiltonians. Unfortunately such a simple explanation 
does not seem possible for the systems with general excess angular momentum. One 
reason for this is that the factor c does not enter the problem linearly but has to be 
introduced for each value of m by the non-linear modification of m ( m + n - 2 )  to 
cm(cm+n-2). However, when b= 1 the space on which the excess system acts can be 
decomposed, as will be shown for the hydrogen atom. 

Each degeneracy space of the hydrogen atom with excess angular momentum can 
be decomposed into a set of subspaces, each of which is also a degeneracy space of the 
orbital angular momentum operator. Let Fm,k be the subspace corresponding to the 
energy value - $[am + k + $(n - 1)]- ' on which the total orbital angular momentum 
takes the value m. For any fixed integer s, 0 6 s -= a, define 

V s  = 0 F m , a k + s  
m,k 

where the sum is over all possible m and k .  There will be a distinct V s  formed as s varies 
and if V denotes the space on which the excess system acts, then 

V = 0 VS, 
S 

where the direct sum contains each of the distinct V s  exactly once. 
If Fm,k is the degeneracy subspace, with angular momentum m, of the ordinary 

hydrogen atom corresponding to the energy value -)[m+ k + $ ( n  - 1)]-', then Fm,ak+s 
and Fk,k have exactly the same dimension and so there is a unitary map uk.k transforming 
one into the other. This applies to each pair m, k ,  and so Us = e m , k  u k , k  is a unitary 
map transforming V s  into V.  Thus each V s  is isomorphic to V and if U = 0, Us, then 

Suppose fm,k belongs to F 6 , k ,  then ( u L , . k ) - ' f m , k  is an eigenvector of the excess system 
giving the value -+[(am + ak + s) + gn - 1)]- '. Keeping s fixed this is clearly a function 
of the eigenvalue of f m , k  in the normal system. Thus the action of the excess system on 
(Us)- ' V i s  equivalent to the action of a function of the ordinary hydrogen atom. Hence, 
under the unitary transformation U ,  the hydrogen atom with excess angular momentum 

U : V +  0, V. 
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(b  = 1) is equivalent to the action of the direct sum of a simple functions of the ordinary 
hydrogen atom. 

The degeneracies of these simple functions are clearly the same as those of the 
ordinary hydrogen atom and so this equivalence explains why the degeneracies of the 
excess system, with b = 1, must be equivalent to a copies of the degeneracies associated 
with the normal system. Further, this is similar to the decomposition of the anisotropic 
harmonic oscillator with rationally related frequencies, which was noted earlier. 

The situation becomes much more complex when b is greater than 1. It is no longer 
possible to decompose the spaces simply because different values of m would be involved 
and the dimensions of the degeneracy spaces depend on m. 

6. Conclusions 

The degeneracies of the hydrogen atom and harmonic oscillator with excess angular 
momentum have been calculated and shown to be simply related to those occurring 
in the normal case. This relation has been explained for the hydrogen atom, when 
b = 1, by observing that the excess system can be decomposed into the direct sum of 
several normal systems. This decomposition is similar to that used with the anisotropic 
harmonic oscillator and is again defined in terms of the basis rather than being con- 
structed elegantly. However, the results clearly demonstrate the important fact that 
even when some of the symmetry of the hydrogen atom and isotropic oscillator is 
destroyed by introducing unusual factors, the degeneracies can still be related to the 
representations of the groups O(n + 1) and SU(n). 
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